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Abstract    

Exploiting the unique ability of the European Transonic
Windtunnel to vary the free-stream dynamic pressure at
constant Reynolds number (and vice versa), the effective
aerodynamic wing twist is determined by comparing the
normalized pressures measured at certain wing sections.
This task is performed by a computer program which
processes the pressures of one individual wing section
that have been acquired at the same Mach and Reynolds
number, but different levels of tunnel pressure and
temperature, i.e. different dynamic pressures. To obtain
the geometric twist, the induced downwash angle which
originates from the effective wing twist alone is
estimated and added to the effective wing twist.

This paper describes the effect of the wing twist on the
measurement results, the mathematical model used to
determine the effective aerodynamic twist and the
features of the above mentioned software. The rela-
tionship between wing bending and twist in the case of a
swept wing and its impact on the results is discussed as
well as the computation of the geometric wing twist. The
last section contains an assessment of the accuracy and
the description of the advantages and disadvantages of
the presented method.

List of Symbols
a0, a1 polynomial coefficients
b half wing span
c(η) local chord length
c mean aerodynamic chord
CL lift coefficient
C´L∞ dCL/dα of an infinitely long wing
Cp pressure coefficient
E modulus of elasticity
L lift force
M Mach number
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q free-stream dynamic pressure
Re chord Reynolds number
α model angle of incidence
γ normalized circulation
ε(η) local wing twist
η relative wing span (-1 ≤ η ≤ 1)

Introduction
For a few years now cryogenic wind tunnels are able to
test aircraft models at high Reynolds numbers, requiring
an elevated tunnel pressure with a corresponding
increase in the aerodynamic loads and therefore in the
elastic deformation of the wing†. Although the inde-
pendent variation of Reynolds number (at constant q/E)
and dynamic pressure (at constant Re) allows the sepa-
rate evaluation of the resulting effects, the respective
shape of the wing, especially its twist, is essential infor-
mation for the development  engineer.

Based on the assumption that each tap on a pressure
plotted wing located in an area where the local pressure
shows a distinct variation with the angle of attack can be
regarded as a pitch meter, the local effective wing twist
can be computed and the approximate geometric twist
estimated.

Effect of the Wing Twist on Test Results
In the case of ETW as a cryogenic facility the client has
not only to make up his mind at which Reynolds number
he wants to perform a test, but has also to decide on
tunnel pressure and temperature. As shown in Figure 1,
the same Reynolds number can be achieved at a variety
of pressure and temperature combinations, each resulting
in a different dynamic pressure and therefore different
model loads, deformations and finally test results.

                                                
† For example, the lift produced by a suitably scaled transport aircraft
model at cruising speed and flight Reynolds number can easily reach
20 kN, leading to a local wing twist near the tip of more than 2° for a
model made of steel.
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Figure 1:  ETW Envelope at M=0.85, c=0.2301 m

The effect of the wing twist on the lift coefficient is
shown in Figure 2, the effect on the axial force coef-
ficient in Figure 3, with the model and test conditions
being those of Figure 1. Lift and axial force are clearly
decreasing with increasing tunnel pressure, in the case of
the axial force distinctly more than the aspired 1 drag
count accuracy.

Figure 2: Effect of the wing twist on the lift force at
constant Reynolds number.

Figure 3: Effect of the wing twist on the axial force at
constant Reynolds number.

Depicted in Figure 4 are the pressure distributions mea-
sured at 7 wing sections at about the same angle of in-
cidence, the one in the lower left corner being close to
the fuselage. As one expects, the differences are very
small at the inner part of the wing and are considerably
increasing towards the wing tip. Although all relevant
test conditions (M, Re and α) have been kept constant,
in fact one parameter, i.e. the wing deformation, has
been involuntarily varied, thus raising the question
“which model has been actually tested“.

Figure 4: Effect of the wing twist on the local pressure
distribution at constant Reynolds number.
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Determination of the Effective Wing Twist
The basic idea of the ETW approach is to view each
wing section individually: the two most similar pressure
distributions in the data of two polars, which were taken
at the same Mach and Reynolds number, but different
levels of the dynamic pressure, are interpreted as repre-
senting the same local effective angle of attack, and the
α difference is regarded as the difference in the local
effective wing twist. Writing this as a mathematical
equation (indices 1 and 2 representing different q levels),
we get

αlocal - αmodel,2 - (αlocal - αmodel,1 ) = εeff,2 - εeff,1

and after eliminating the unknown local α

αmodel,2 - αmodel,1 = - (εeff,2 - εeff,1)        (1)

The following simple mathematical model has been
chosen to describe the effective twist as a linear function
of dynamic pressure and lift force:

εeff = f(q,L)

or after substituting L by CL×q:

εeff = - (a0 + a1×CL)×q        (2)

The final equation is obtained by combining Equations
(1) and (2), assuming that CL,1≈CL,2:

αmodel,2 - αmodel,1
  =  a0 + a1×CL        (3)

   q2 – q1

which contains no unknowns besides coefficients a0,a1
and can be solved by applying a least square fit to the
pairs of variates CL,∆α/∆q obtained from the comparison
of the pressure distributions at different values of CL.

However the initial idea of comparing the shape of the
pressure distributions at individual wing sections turned
out to give inaccurate results due to the fact that the flow
is considerably deflected on its way from the leading to
the trailing edge. Therefore in a second approach the
pressure taps were regarded as individual pitch meters
(Figure 5), and the ∆α at a given angle of incidence
determined separately for each tap of the processed wing
section. This means that Equation (3) describes in fact a
linear transformation from the model to the local
coordinate system, thus mapping the measured α,Cp
curves shown in Figure 5 upon each other.

This second approach has the advantage of better
robustness and allows in addition the reduction of the
number of pressure taps required to evaluate the local
effective wing twist to about 4-5. Although the problem
of the deflected flow per se is not solved, it can be coped
with by using only those taps which are located in a
mainly unaffected area. If this is not possible, the results

can be approximately corrected if the deflection angles
are known from CFD calculations (a more detailed dis-
cussion follows in the next paragraph).

Figure 5: Pressure coefficients of selected taps as
function of the incidence angle at the out-
board section η=0.84

The software which has been developed to determine the
coefficients a0, a1 of Equation (3) performs the following
steps [2]:

•  Input of the data of 2 to 3 polars belonging to one
wing section and interpolation in steps of 0.15°

•  Computation and assessment of the ratio ∆αi /∆q
for all taps and all αi, including:

•  Elimination of invalid or nearly constant
pressure data.

•  Weighting of all ∆αi /∆q values with the
local pressure gradient dCp,i /dαi.

•  Successive exclusion of those ∆αi/∆q values
which by a certain amount exceed the re-
gression value that has been computed for
the current incidence angle ∆αi.

•  Determination of a possible offset ∆Cp
caused by temperature drift or inaccuracies
in the in-situ calibration* of the pressure
scanners.

•  Complete re-computation of all ∆αi /∆q
values with ∆Cp applied.

                                                
* Performed prior to any test run.
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•  Computation of the coefficients a0 and a1 via linear
regression.

•  Opening of a window on the terminal screen dis-
playing the diagram CL,∆α/∆q, in addition offering
the possibility to interactively eliminate obvious
outliers by pointing at the respective marker and
pressing Mouse Button 1.

•  Storage and printing of the manually performed
modifications.

The results obtained at two wing sections are presented
in Figures 6 and 7. Deactivated outliers are immediately
excluded from the regression analysis, but remain visible
for documentation purposes†.

Figure 6: Evaluation of the wing pressures of a full
model at η=0.47

Figure 7: Evaluation of the wing pressures of a full
model at  η=0.84

                                                
† Reactivation via Mouse Button 2 is also possible.

The scaling of the ordinate in °/100 kPa has been chosen
because 100 kPa represent a typical value of the dyna-
mic pressure at high Reynolds number tests, and the
fixed scaling allows the direct comparison and assess-
ment of the data scatter.

A number of important conclusions can be drawn from
Figures 6 and 7:

•  The results of the analysis are independent of  ∆q
(the high ∆q exceeds the low ∆q by a factor of 3).

•  The effective wing twist does not become zero at
CL=0 because of the pitching moment being ≠0.

•  The CL, ∆α/∆q graph remains linear even at high
incidence angles where the slope of the α,CL graph
is significantly reduced.

•  The assumption of the local effective twist being a
linear function of dynamic pressure and lift force
(Equation (2)) has been confirmed (at least for this
type of model).

Figure 8 shows the graphs of Figure 5 with the linear
transformation ∆α = (a0 + a1×CL)×∆q applied to the high
pressure data. Although areas with relatively high devia-
tions exist, these are identified by the software and auto-
matically excluded from the evaluation, which demon-
strates the robustness of the process.

Figure 8: Pressure coefficients of selected taps as
function of the angle of incidence at the
outboard section η=0.84, α transformation
applied to high pressure data.
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The effective twist at 6 different values of CL, obtained
from the data of 7 wing sections, has been plotted vs.
relative wing span in Figure 9. The wing root is located
at η ≈ 0.11, and the trailing edge kink at η ≈ 0.34. The
obvious dependence of the wing twist on the lift is
discussed in the next paragraph, the relationship between
effective and geometric twist (shown as dashed line) in
the paragraph after.

Figure 9: Results of a complete wing twist analysis:
Effective twist vs. wing span. Estimated geo-
metric twist (CL=0.5) shown as dashed line.

Bending and Twist of a Swept Wing
A particular feature of swept wings is the aerodynamic
twist due to bending as shown in Figure 10. Although a
pure bending along the centre line has been simulated,
an increasing negative twist angle‡ towards the wing tip
is observed. This explains the above postulated and later
on confirmed linear relationship between local twist and
lift.

The coupling between wing bending and twist§ is also
the reason for the above mentioned inaccuracy if the
flow deviation on the upper and lower surface is not
taken into account. A deviation towards the fuselage has
the same effect as reducing the sweep angle and hence
the twist due to bending, which means that the pitch

                                                
‡ Bending of a forward swept wing results in a positive wing twist.

§ For small bending angles < 5°, the local twist angle due to bending
can be calculated as:
εb = atan(sin γ × tan β), γ: sweep back angle, β: local bending angle

meter (i.e. wing pressure tap) measures a local twist
which is too low. The opposite holds true if the flow is
deflected towards the wing tip. It is therefore desirable to
have access to streamline plots from CFD calculations to
be able to either select pressure taps which are located in
a region with negligible flow deviations**, or to apply
approximate corrections to the results making use of the
known deflection angles.

Figure 10: Aerodynamic twist of a swept wing due to
pure bending.

Estimate of the Geometric Wing Twist
According to classical lifting surface theory, the vortex
system  generated  by  the  wing  induces a  downwash,
resulting in a reduced angle of attack called the true (or
effective) angle of incidence:

αtrue = αgeometric - αinduced

Figure 11 shows how this affects the untwisted and the
twisted wing: in both cases the wing tip is attacked by
the flow under the same effective angle αe (found by
comparing the local pressures), however because of the
stronger downwash produced by the untwisted wing, this
can only be achieved if the geometrical angle of
incidence of the untwisted wing is greater than that of
the twisted wing.

                                                
** e.g. between 1 and 50% chord length on the lower surface
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Figure 11: Effect of the induced downwash on the local angle of attack for a twisted and an untwisted wing.

The difference in the incidence angles ∆αg is therefore
lower than the difference in the local geometric wing
twists. The latter can nevertheless be assessed by
adding the induced downwash, which is due to the
wing twist alone, to the local effective twist obtained
from Equation (2):

εgeometric (η) = εeff (η) + ∆αinduced(η)       (4)

To validate what has been said above, the induced
downwash of an untwisted and a twisted wing have
been computed by solving the downwash integral of
the lifting line theory, assuming an elliptical
distribution of the circulation at CL=0.5 in the case of
the untwisted wing. The result is shown in Figure 12:
in accordance with theory the untwisted wing produces
a constant downwash, whereas the downwash of the
twisted wing†† is higher at the inner and lower at the
outer part of the wing. This also explains the fact that
the characteristics in Figure 9 depicting the effective
and the geometric twist at CL=0.5 intersect at η=0.4.

                                                
†† A twist which is parabolically increasing  towards the wing tip
     has been simulated.

To obtain the induced angle of incidence required to
assess the geometric wing twist (Equation 4), the
normalized circulation γ is computed according to [1]:

γ(η) = C´L∞ × εeff(η) × c(η) / 2b                (5)

The local effective wing twist εeff is described by
Equation 2, local chord length c(η) and half wing span
b are known from the wing geometry. If the slope
dCL/dα of the α,CL curve of the infinitely long wing,
i.e. the profile characteristic C´L∞(η), is either known
from CFD calculations or estimated from the test
results, the derivative dγ/dη can be calculated and the
downwash integral‡‡

solved for one combination of M, Re, q and CL at a
time.

                                                
‡‡ Two interesting aspects of the downwash integral are:

•  The induced downwash is not determined by the magnitude
of the circulation, but by its gradient. This means that an
infinitely long wing produces no downwash and has therefore
no induced drag.

•  Due to the hyperbolic character of the integration function the
downwash is dominated by the gradient of the circulation in
its close vicinity, although the integration interval spans the
complete wing.
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Figure 12: Circulation distribution and induced inci-
dence angle of a twisted and an untwisted
wing

Assessment of the Method
Since no reference data is available and a validation in
the laboratory is not possible, the accuracy of the ETW
approach to assess the wing twist for pressure plotted
models can only be estimated. From Figures 6, 7 and
13 it can however be concluded that - good data quality
provided - low data scatter and an excellent resolution
of even very small differences in the local twist (Figure
13) are achievable. Based on the experience that has
been gained with different models, an uncertainty in
the results of the wing pressure evaluation of about
±0.1° seems to be a realistic assumption. The
additional uncertainty which is due to the deflection of
the streamlines and the induced downwash depends
mainly on the quality and extent of the information
provided by the client.

The main disadvantages of the method are:

•  Requires a pressure plotted wind tunnel model
(however the measurement method is in principle
not limited to pressure taps, e.g. pressure data of
comparable accuracy originating from tests with
pressure sensitive paint are suitable as well).

Figure 13: Evaluation of the wing pressures of a half
model at η=0.85

•  Allows no reliable prediction of the achievable
accuracy prior to the availability of measurement
data.

•  If  the geometric twist is to be determined by
ETW, the accuracy will be reduced due to the
uncertainty in the assessment of the induced
downwash.

The main advantages of the method are:

•  Usable over the full operating range of the
tunnel.

•  Based on a well proven measurement technique.

•  Requires neither surface treatment (e.g. coating)
nor additional instrumentation or calibration.

•  Model attitude and mounting have no effect on
applicability and accuracy (can be used for full
and half models).

•  Insensitive to vibrations, turbulence, temperature
gradients, etc.

•  Simple computation of the effective twist for all
values of CL and q.

Conclusion
In the case of pressure plotted wind tunnel models the
approach presented in this paper offers the opportunity
to assess the local wing twist with nearly no additional
expense. It thereby represents at least a welcome
supplement to other methods, in certain cases it might
even be considered a true alternative.
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To take full advantage of its potential and to improve
the accuracy particularly in calculating the induced
downwash, beside the gathering of further experience
the cooperation of the client in providing the results of
CFD computations as well as feed-back information is
required.
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